Reaction Wheel Disturbance Model Extraction Software, Phase II

Completed Technology Project (2007 - 2009)

Project Introduction

Reaction wheel mechanical noise is one of the largest sources of disturbance forcing on space-based observatories. Such noise arises from mass imbalance, bearing imperfections, and other sources. It takes the form of a number of discrete harmonics of the wheel speed, often also with a broadband noise component. Jitter problems can arise when harmonics sweep across observatory modes, and can be exacerbated by gyroscopically coupled spinrate-dependent wheel structural modes that dynamically amplify the tonal and broadband disturbances. For a well-balanced wheel, higher harmonic forces can be on the same order as the fundamental, therefore when there is a jitter problem it can occur at very low wheel speed. These higher harmonics are generally less well-characterized than the fundamental. The proposed Reaction Wheel Disturbance Model Extraction Software (RWDMES) is a tool for fitting a hybrid physical/empirical model to wheel induced-vibration data. The physical model captures the wheel structure including gyroscopic effects, while the empirical model captures the harmonic forcing and broadband noise. The Phase I effort demonstrated the ability to fit a highly accurate harmonic/broadband/structural model, including 43 harmonics up to 14.63 times the fundamental, to measured wheel disturbance data in a point-andclick environment in about 2 hours. The benefits of the technology include reduced program effort to produce wheel disturbance models, leading to more accurate jitter prediction earlier in a mission. This in turn allows jitter problems to be mitigated at the design stage when changes are relatively inexpensive.

Primary U.S. Work Locations and Key Partners

Reaction Wheel Disturbance Model Extraction Software, Phase II

Table of Contents

Project Introduction		
Primary U.S. Work Locations		
and Key Partners	1	
Organizational Responsibility	1	
Project Transitions		
Project Management		
Technology Areas		

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Center / Facility:

Goddard Space Flight Center (GSFC)

Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Small Business Innovation Research/Small Business Tech Transfer

Reaction Wheel Disturbance Model Extraction Software, Phase II

Completed Technology Project (2007 - 2009)

Organizations Performing Work	Role	Туре	Location
☆Goddard Space Flight Center(GSFC)	Lead Organization	NASA Center	Greenbelt, Maryland
Nightsky Systems, Inc.	Supporting Organization	Industry	Raleigh, North Carolina

Primary U.S. Work Locations		
Maryland	North Carolina	

Project Transitions

December 2007: Project Start

December 2009: Closed out

Project Management

Program Director:

Jason L Kessler

Program Manager:

Carlos Torrez

Technology Areas

Primary:

- TX04 Robotic Systems
 - ☐ TX04.2 Mobility
 - □ TX04.2.5 Robot
 Navigation and Path
 Planning

